Home

organisere Bestået hoppe performance of batteries in temperature google scholar hybrid Og program

Temperature effect and thermal impact in lithium-ion batteries: A review -  ScienceDirect
Temperature effect and thermal impact in lithium-ion batteries: A review - ScienceDirect

High performance of low-temperature electrolyte for lithium-ion batteries  using mixed additives - ScienceDirect
High performance of low-temperature electrolyte for lithium-ion batteries using mixed additives - ScienceDirect

Batteries | Free Full-Text | A Review on Temperature-Dependent  Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells
Batteries | Free Full-Text | A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells

Preheating method of lithium-ion batteries in an electric vehicle | Journal  of Modern Power Systems and Clean Energy
Preheating method of lithium-ion batteries in an electric vehicle | Journal of Modern Power Systems and Clean Energy

Solvent selection criteria for temperature-resilient lithium–sulfur  batteries | PNAS
Solvent selection criteria for temperature-resilient lithium–sulfur batteries | PNAS

Batteries | Free Full-Text | Cell Design for Improving Low-Temperature  Performance of Lithium-Ion Batteries for Electric Vehicles
Batteries | Free Full-Text | Cell Design for Improving Low-Temperature Performance of Lithium-Ion Batteries for Electric Vehicles

Impedance-based forecasting of lithium-ion battery performance amid uneven  usage | Nature Communications
Impedance-based forecasting of lithium-ion battery performance amid uneven usage | Nature Communications

Theory-guided experimental design in battery materials research | Science  Advances
Theory-guided experimental design in battery materials research | Science Advances

Sodium‐Ion Battery with a Wide Operation‐Temperature Range from −70 to 100  °C - Li - 2022 - Angewandte Chemie International Edition - Wiley Online  Library
Sodium‐Ion Battery with a Wide Operation‐Temperature Range from −70 to 100 °C - Li - 2022 - Angewandte Chemie International Edition - Wiley Online Library

Temperature effect and thermal impact in lithium-ion batteries: A review -  ScienceDirect
Temperature effect and thermal impact in lithium-ion batteries: A review - ScienceDirect

Effect analysis on heat dissipation performance enhancement of a  lithium-ion-battery pack with heat pipe for central and southern regions in  China - ScienceDirect
Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China - ScienceDirect

Batteries | Free Full-Text | Cell Design for Improving Low-Temperature  Performance of Lithium-Ion Batteries for Electric Vehicles
Batteries | Free Full-Text | Cell Design for Improving Low-Temperature Performance of Lithium-Ion Batteries for Electric Vehicles

Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based  concentrated electrolytes | Nature Communications
Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes | Nature Communications

A review of rechargeable batteries for portable electronic devices - Liang  - 2019 - InfoMat - Wiley Online Library
A review of rechargeable batteries for portable electronic devices - Liang - 2019 - InfoMat - Wiley Online Library

Temperature effect and thermal impact in lithium-ion batteries: A review -  ScienceDirect
Temperature effect and thermal impact in lithium-ion batteries: A review - ScienceDirect

Frontiers | Assessment of the calendar aging of lithium-ion batteries for a  long-term—Space missions
Frontiers | Assessment of the calendar aging of lithium-ion batteries for a long-term—Space missions

Energies | Free Full-Text | Temperature, Ageing and Thermal Management of  Lithium-Ion Batteries
Energies | Free Full-Text | Temperature, Ageing and Thermal Management of Lithium-Ion Batteries

Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended  Survival Temperature of Lithium-Ion Batteries to −130 °C | CCS Chemistry
Decimal Solvent-Based High-Entropy Electrolyte Enabling the Extended Survival Temperature of Lithium-Ion Batteries to −130 °C | CCS Chemistry

Batteries | Free Full-Text | Cell Design for Improving Low-Temperature  Performance of Lithium-Ion Batteries for Electric Vehicles
Batteries | Free Full-Text | Cell Design for Improving Low-Temperature Performance of Lithium-Ion Batteries for Electric Vehicles

Batteries | Free Full-Text | A Review on Temperature-Dependent  Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells
Batteries | Free Full-Text | A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells

Optimal operating temperature of Li-ion battery [26] | Download Scientific  Diagram
Optimal operating temperature of Li-ion battery [26] | Download Scientific Diagram

Impact of Individual Cell Parameter Difference on the Performance of  Series–Parallel Battery Packs | ACS Omega
Impact of Individual Cell Parameter Difference on the Performance of Series–Parallel Battery Packs | ACS Omega

Identifying degradation patterns of lithium ion batteries from impedance  spectroscopy using machine learning | Nature Communications
Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning | Nature Communications